Cevap :
OBEB (ORTAK BÖLENLERİN EN BÜYÜĞÜ)
OBEB, iki veya daha çok sayıyı aynı anda bölebilen en büyük sayıdır. Verilen sayıların OBEB' ini bulmak için, sayılar asal çarpanlarına ayrılır ve ortak asal çarpanların en küçük üsleri alınır.
1. Aralarında asal iki sayının OBEB' i 1' dir. Yani, a ile b aralarında asal iki sayı ise,
(a, b)OBEB = 1 dir.
2. Aynı zamanda, ikiden çok sayıdaki sayılardan en az iki tanesi aralarında asal ise, bu sayıların OBEB' i 1' dir. Yani, a, b, c, d, e sayılarından a ile b aralarında asal ise,
(a, b, c, d, e)OBEB = 1 dir.
3. İki veya daha fazla sayının ortak tam bölenlerinin sayısı, OBEB' inin bölenlerinin sayısına eşittir.
4. Ardışık iki sayma sayısının OBEB' i 1' dir. Yani, a ile b ardışık iki sayma sayısı olmak üzere,
(a , b)OKEK = 1 dir.
Örnek 1:
18, 30, 42 sayılarının OBEB' i kaçtır?
Çözüm:
1. Yol:
18, 30 ve 42 sayılarının üçünü birden bölen sayılar 2 ve 3 tür. Dolayısıyla,
(18, 30, 42)OBEB = 2 . 3 = 6 dır.
2. Yol:
18 = 2.32
30 = 2.3.5
42 = 2.3.7
Her üç sayının ortak asal çarpanlarının en küçük üslüsü alınmalıdır. Dolayısıyla,
(18, 30, 42)OBEB = 2.3 = 6 dır.
Örnek 2:
100 ile 120 sayılarının OBEB' i kaçtır?
Çözüm:
1. Yol:
100 ile 120 sayısının ikisini birden bölen sayıları 22 ile 5 dir. Dolayısıyla,
(100, 120)OBEB = 22 . 5 = 4 . 5 = 20 dir.
2. Yol:
100 = 22.52
120 = 23.3.5
Her iki sayının ortak asal çarpanlarının en küçük üslüsü alınmalıdır. Dolayısıyla,
(100, 120)OBEB = 22.5 = 20 dir.
Örnek 3:
6, 15 ve 29 sayılarının OBEB' i kaçtır?
Çözüm:
İkiden çok sayıdaki sayıların en az iki tanesi aralarında asal ise, bu sayıların OBEB' i 1 olduğundan, verilen sayılardan 6 ile 29 sayısı veya 15 ile 29 sayısı aralarında asal olduğu için
(6, 15, 29)OBEB = 1
dir.
Örnek 4:
100 ile 120 sayılarının ortak tam bölenlerinin sayısı kaçtır?
Çözüm:
(100, 120)OBEB = 22.51 = 20
olduğundan, pozitif bölenlerinin sayısı,
( 2 + 1) . ( 1 + 1 ) = 3 . 2 = 6
bulunur. Buradan, tüm bölenlerin sayısı, pozitif bölenlerin sayısının iki katına eşit olduğundan,
2 . 6 = 12 olur.
Örnek 5:
Boyutları 9 cm, 12 cm, 15 cm olan dikdörtgenler prizması biçimindeki kutunun içerisi, boş yer kalmayacak şekilde en büyük boyutlu küplerle doldurulmak istenmektedir. Bu kutuya kaç tane küp yerleştirilebilir?
Çözüm:
Kutu en büyük boyutlu küplerle doldurulmak istendiğinden, 9 cm, 12 cm, 15 cm sayılarının OBEB' i bulunmalıdır. Bu nedenle,
(9, 12, 15)OBEB = 3 tür. Böylece, en büyük boyutlu küpün bir kenarı = 3 cm olur. Bir kenarı 3 cm olacak şekilde yerleştirilebilecek küp sayısı,
Küp sayısı = Kutunun hacmi / Küpün hacmi = 9.12.15/3.3.3 = 3.4.5 = 60
tane olur.
Örnek 6:
Boyutları 24 m ve 60 m olan dikdörtgen şeklindeki bir arsanın çevresine eşit aralıklarla en az sayıda kaç ağaç dikilebilir?
Çözüm:
İki ağacın arasındaki uzaklık, dikdörtgenin boyutlarının OBEB' i olur. Dolayısıyla,
(24, 60)OBEB = 12
Ağaç Sayısı = Çevre / 12 = 2 . (24 + 60) / 12 = 84 / 6 = 14
dir.
OKEK (ORTAK KATLARIN EN KÜÇÜĞÜ)
İki veya daha çok sayının her birine bölünen en küçük sayıdır. Verilen iki veya daha çok sayının OKEK' ini bulmak için, sayılar asal çarpanlarının kuvvetleri cinsinden yazılır ve ortak asal çarpanlarından üsleri en büyük olanlarla ortak olmayan asal çarpanlarının tümü alınarak çarpılır.
1. Aralarında asal sayıların OKEK' i, bu sayıların çarpımlarına eşittir. Yani, a ile b sayısı aralarında asal sayılar ise,
(a, b)OKEK = a . b dir.
2. a ve b iki doğal sayı olmak üzere, bu iki doğal sayının OBEB' i ile OKEK' inin çarpımı, bu iki doğal sayının çarpımına eşittir. Yani, a ve b doğal sayısı için
a . b = (a, b)OKEK . (a, b)OBEB dir.
3. a, b, c, d sayma sayıları olmak üzere,
(a/c,b/d)OKEK = (a, b)OKEK / (c, d)OBEB dir.
4. a ve b iki doğal sayı olmak üzere,
(a, b)OKEK = x ve (a, b)OBEB = y
ise, a ile b sayılarının toplamının en büyük değeri
x + y dir.
5. Ardışık iki sayma sayısının OKEK' i bu iki sayının çarpımına eşittir. Yani, a ile b ardışık iki sayma sayısı olmak üzere,
(a, b)OKEK = a . b dir.
6. a ile b sayma sayıları olmak üzere, a < b ise,
(a, b)OBEB <= a <= b <= (a, b)OKEK dir.
Örnek 1:
18 ile 45 sayılarının OKEK' ini bulunuz.
Çözüm:
1. Yol:
18 = 2 . 32
45 = 32 . 5
olduğundan, (18, 45)OKEK = 32 . 2 . 5 = 90 olur.
2. Yol:
(18, 45)OKEK = 2 . 32 . 5 = 90 dır.
Örnek 2:
a ve b doğal sayılarının OKEK' i 48 ve OBEB' i 8 ve bu sayılardan biri 16 ise, diğer sayı kaçtır?
Çözüm:
a = 16 olsun. (16, b)OKEK = 48 ve (16, b)OBEB = 8 olduğuna göre,
a . b = (a, b)OKEK . (a, b)OBEB
16 . b = 48 . 8
b = 24
A. EN BÜYÜK ORTAK BÖLEN (E.B.O.B.)
En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların en büyük ortak böleni denir ve e.b.o.b. biçiminde gösterilir.
E.b.o.b. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan büyük olmayan üslülerin çarpımı bu sayıların e.b.o.b. unu verir.
-Eğer a ¹ 0 veya b ¹ 0 ise e.b.o.b. tanımlı olup e.b.o.b.(a ; b) ³ 1 dir.
-a = b = 0 ise e.b.o.b.(a ; b) tanımsızdır.
B. EN KÜÇÜK ORTAK KAT (E.K.O.K.)
Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların en küçük ortak katı denir ve e.k.o.k. biçiminde gösterilir.
E.k.o.k. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların e.k.o.k. unu verir.
a ve b tam sayılarından en az biri sıfır ise, e.k.o.k.(a ; b) tanımsızdır.
--------------------------------------------------------
a ve b pozitif tam sayı, a £ b ise,
-e.b.o.b.(a ; b) £ a £ b £ e.k.o.k.(a ; b)
-a × b = e.b.o.b.(a ; b) × e.k.o.k.(a ; b)
-a ile b aralarında asal ise, e.b.o.b.(a ; b) = 1
--------------------------------------------------------
İki pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşit olmayabilir.