Cevap :
Bu konumuzda; Cebirsel ifadelerdeki toplama ve çıkarma işleminden bahsedeceğiz.
Cebirsel ifadelerdeki işlemleri yapmadan önce bazı bilgilere ihtiyacımız var. İsterseniz önce bunların tanımlarını bir verelim.
Değişken: Bir cebirsel ifadedeki bilinmeyenlere değişken denir. Bu değişkenler x,y,z,a,b,m,n,… şeklinde olabilirler. Terim: Bir cebirsel ifadede + veya - işaretleriyle ayrılmış olan parçalara terim denir.örneğin; 2xy-5x ifadesi 2 terimden oluşur.Fakat -9xyzka ifadesi tek terimlidir.
Katsayı: Bir terimin önünde bulunan sayılardır. 2xy ifadesinin katsayısı 2 dir. -5x in katsayısı -5 tir.2xyz-4x-5 ifadesinde 3 tane katsayı vardır. bunlar 2 ve -4 ve -5 tir. DİKKAT! -5 in önünde bilinmeyen olmasa da katsayısı vardır.
Benzer terim: Bir cebirsel ifadenin birçok terimi olsun. Eğer terimleri birbirinin aynısı ise bunlara benzer terim denir. Dikkat! Terimler katsayıları haricinde tamamen birbirine benzemeli. Denklem: içinde eşittir işareti olan ifadelerdir.Örneğin; 2x-5 = 7 gibi…
Şimdi konumuzu anlatmaya başlayalım…
Cebirsel ifadelerde Toplama ve Çıkarma işlemi:
Toplama ve çıkarma işlemini beraber veriyoruz. Çünkü mantığı aynı.
Örnekle başlayalım: 2 elma + 3 elma = 5 elma
peki…
2 elma +3 armut = ?
5 elma mı eder, yoksa 5 armut mu?
Toplama ve çıkarma işleminde birimleri aynı olmayan şeyleri toplayamaz ve çıkartamayız. Cebrisel ifadelerde de toplama veya çıkarma işlemi yaparken terimlerin aynı olmasına dikkat edeceğiz.
Örnek: 2x-4x =-2x gördüğümüz gibi elma ile elmanın toplanmasına benziyor. Terimler aynı, ikisi de x ten oluşuyor. O halde toplama veya çıkarma işlemi yapabilirim.
peki işlemi nasıl yaptım ?
bir parantez açıyorum ve parantezin arkasına aynı olan terimi yazıyorum. İçine de gördüğüm sayıları yazıyorum.Sonra parantez içindeki işlemi yapıyorum.Çok basit. Bakın !
(2-4)x=-2x ( aynı rasyonel sayılarda toplama ve çıkarma işleminde paydaların sabit kalması gibi, burada da terimler aynı kalıyor.
Başka bir örnek: -3ab-4b = ?
soruda toplama ve çıkarma işlemi yapılamaz çünkü terimler aynı değil. Terimin biri ab den, diğeri ise sadece bden oluşuyor.
Soru: Peki birçok terim varsa ne yapmalıyız.
Cevap: Birçok terim olabilir, var ise sadece birbirine benzeyen terimler ile toplama çıkarma işlemi yapılabilir. Benzer terim kalmadığında ise işlem o şekilde bırakılır. sonuç yazılır.
Örnek: +4a-5ab-3a-4b+2ab
=(+4-3)a+(-5+2)ab-4b
= +1a-3ab-4b
Cebir, yapı, bağıntı ve nicelik üzerine uğraşan bir matematik dalıdır. Bilinmeyen değerlerin, simge ve harflerle betimlenerek kurulan denklemlerle bulunması (ya da bilinmeyenlerin arasındaki bağıntının bulunması) temeline dayanır. Denklem kurma ve çözme, genelleme yapma ve denklemlerle ve oradan hareketle fonksiyonlarla çalışma olarak üç temel karakteristiğiyle açıklanabilir. Bir cebirsel etkinlik bunlardan birini veya tümünü içerebilir.
“3 ekmeğin, 5 şişe litrelik sütün ve bir düzine yumurtanın fiyatı” ile matematiksel olarak ilişki kurmak güç gelebilir. Cebir; bu tip problemlerle daha kolay ilişki kurmamızı sağlayan bir matematiksel dildir. Cebir; aritmetiğin sayılardan küme ve grup kavramlarını kullanarak sembollere açılımıdır. Simgesel denklemlerle hesap yapan matematik kolu olarak da tanımlanabilir. Bilinen sayılarla yapılan bir hesap (2+9-3=8) bir ‘problem’ oluşturmaz. Fakat bir ya da birden fazla bilinmeyene sahip bir hesap (x+9-y=6+x), denklem (‘problem’) oluşturmuş olur ve bunun çözümü, ‘cebir’ ile mümkündür. Demek ki cebir, alanı 15 metrekare olan bir karenin kenar uzunluğunu, ya da % 20’lik bir indirimden sonra 250 bin lira ödenmiş bir eşyanın gerçek fiyatını bulmak için kullanılır.