Cevap :
http://testcoz.dersizlesene.com/Ilkogretim/6-Sinif/Matematik-Testleri/Kumeler-Testi-3-990.html tavsye edrim çok gzl
SORU: A = { X : ( X + 3 )0 ≠ 1, X ∈ R } kümesinin kaç elemanı vardır.
ÇÖZÜM : a ≠ 0 olmak üzere a0 = 1 dir . Buna göre ;
( X + 3 ) = 0 için ( X + 3 )0 ≠ 1 dir.
X + 3 = 0 Þ X = - 3
A = { - 3 } ve s( A ) =1 dir.
SORU : A=[ a , b , c , d } kümesinin;
a) Kaç tane alt kümesi vardır?
b) Kaç tane öz alt kümesi vardır?
ÇÖZÜM : a) 24 = 16 tane alt kümesi vardır
b) 24 –1 = 15 tane öz alt kümesi vardır.
SORU : Bir A kümesinin alt küme sayısı ile öz alt küm sayısının toplamı 15 ise , A kümesinin kaç elemanı vardır ?
ÇÖZÜM : s( A ) = n
2n + 2n - 1 = 15 Þ 2 . 2n = 16
Þ 2n = 8 = 23 Þ n = 3’ tür.
SORU :Matamatik,Fizik ve Kimya derslerinin en az birinden geçen öğrencilerin oluşturduğu 39 kişilik bir sınıfta 2 öğrenci üç derstende geçmiştir . Matamatik’ den geçen 20 , kimyadan geçen 16,Fizikten geçen 15 olduğuna göre,yalnız iki dersten geçen öğrencilerin sayısı kaçtır?
ÇÖZÜM : X = 20 – a – b - 2 = 18 – a - b
M Y = 15 – a – c – 2 = 13 – a – c
X a F Z = 16 – b – c – 2 = 14 – b – c
2 Y Sınıf mevcudu
b c 39 = X + Y + Z + a + b + c + 2
Z K Þ 18 – a – b + 13 – a –c +14 –b – c + a + b + c + 2
Þ a + b + c = 18
SORU : 36 kişilik bir grupta ,15 kişi ingilizce 16 kişi Almanca , 17 kişi Fransızca bilmektedir. Yalnız bu dillerden ikisini bilenlerin yoplam sayısı bu üç dilden hiçbirini bilmeyen ve bu üç dili bilenlerin sayısı aynıdır . Grupta bu üç dili bilen kaç kişi vardır?
ÇÖZÜM : İ A X = m + n + k
I s( İ U A U F ) = s( İ ) + s( A ) + s( F ) – s( İ ∩ A )
M X -s( İ ∩ F ) – s( A ∩ F ) + s( İ ∩ A ∩ F )
k Þ 36 – x = 15 + 16 + 17 – ( n + x ) – ( m + x )
F - ( k + x ) + x
X 36 – x = 48 – ( m + n + k ) – 3x + x
36 – x = 48 – x – 3x + x Þ 2x = 12
Þ x = 6
SORU : bir sınıfta Matamatik dersinden başarılı olanlar %70, bu dersten 3’ün üstünden not alanlar , başarılı olanların %40’dır. Aynı sınıfta Türkçe dersinden başarılı olanlar %80’dir. Bu sınıfta Türkçe dersinden başarılı olanlardan Matamatik dersinde notu 3’ün üstünde olanlar en az yüzde kaçtır ?
ÇÖZÜM : Sınıf 100 kişi olsun .
M T s( M U T ) = s( M ) + s( T ) – s( M ∩ T )
100 = 70 + 80 – s( M ∩ T ) Þ s( M ∩ T ) = 50
X Y Z x = 70 – y = 70 – 50 = 20
70 40 =28 28 – 20 = 8’dir
100
SORU : futbol,basketbol,voleybol oynayanlardan en az birini oynayanların bulunduğu toplulukta futbol oynayan basket oynamıyor ,basketbol oynayan voleybol oynamıyor. Futbol oynamayan 19 kişi ,voleybol oynamayan 9 kişi ise Basketbol oynayan kaç kişi vardır?
ÇÖZÜM : Futbol oynamayan z + t = 13
F V B Yalnız bir oyun oynayanlar x + z + t = 17
X Y Z t x + z + t = x + 3 = 17 Þ x = 4
x + t = 9 Þ 4 + t = 9 Þ t = 5
Basket oynayan = 5 kişidir
SORU : bir yolcu otobüsündeki 54 kişiden 38 tanesi gözlüksüz ve 23 tanesi şapkalıdır. Sapkasız 6 kişi gözlüklü olduğuna göre , hem şapka hem gözlüğünikisine birden sahip olmayan kaç kişi vardır ?
ÇÖZÜM : Otobüsteki yolcu sayısı
Ş G X + y + z + t = 54
X Y Z Gözlüksüz x + t = 38
Şapkalı x + y = 20
t Şapkasız 6 kişi gözlüklü olduğundan z = 6 dır.
Gözlüklü 54 – ( x + t ) = 54 – 38 = 16
Y + z = 16 Þ y = 16 - z = 16 – 6 = 10 Þ ikisine birden sahip olmayan = 54 – 10 = 44 tür.
SORU : A ve B kümeleri için s( B A ) = 5 , s( A ) = 2 s( B ) ve s( A U B ) = 23 ise A I B kümesinin en çok bir elemanlı kaç kümesi vardır ?
ÇÖZÜM : s( A B ) = x , s( A I B ) = Y , s( B A ) = Z olsun.
A B Z = 5 ve s( A U B ) = X + Y + 5 = 23
X Y Z Þ X + Y = 18
s( A ) = 2 . s( B ) Þ X + Y = 2 ( Y + 5 )
18 = 2 .(Y +5 ) Þ Y = 4
A I B en çok bir elemanlı alt kümelerinin sayısı ;
4 4
0 + 1 = 1 + 4 = 5 ’ tir.
SORU: A = { ( X , Y ) : 3x + 2y = 15 , X , Y ∈ N } kümesinin öz alt küme syısı kaçtır ?
ÇÖZÜM : 3x + 2Y = 15 Þ x = 5 – 2Y
3
Y = O Þ x = 5 Buna göre A kümesi
Y = 3 Þ x = 3 A ={ ( 5 , 0 ) , ( 3 , 3 ) , ( 1 , 6 ) } dır.
Y = 6 Þ x = 1’dir. s( A ) = 3 ve A’nın özalt küme sayısı
23 – 1 = 7’dir.
SORU: A= { x: X2 - 6x + 9 > 2 , X ∈ Z }
B={ x : ½x – 1 ½ = 5 , X ∈ R } kümeleri veriliyor. A’ U B kümesinin 2 elemanlı alt kümelerinin sayıları kaçtır?
ÇÖZÜM : X2 – 6 X + 9 = ( X – 3 )2 =½X – 3 ½ > 2
A' kümesinin elemanları ½ X – 3 ½ < 2 koşulunu sağlayan tam sayılardır.
- 2 < X – 3 < 2 X = 6 V x = - 4
1 < X < 5 Þ A' = { 1 , 2 , 3 , 4 , 5 } A' U B = { - 4 , 1 , 2 , 3 , 4 , 5 , 6 }
½ x – 1 ½ = 5 Þ x – 1 = 5V x – 1 = - 5 s( A' U B ) = 7
A’ U B kümesinin 2 elemanlı alt kümelerinin sayısı 7 = 7 . 6 = 21 ’ dir.