Cevap :

ÇARPANLARA AYIRMA

A. ORTAK ÇARPAN PARANTEZİNE ALMA

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.
B. ÖZDEŞLİKLER
1. İki Kare Farkı – Toplamı
1) a2 – b2 = (a – b)(a + b)
2) a2 + b2 = (a + b)2 – 2ab
3) a2 + b2 = (a – b)2 + 2ab
2. İki Küp Farkı – Toplamı
1) a3 – b3 = (a – b)(a2 + ab + b2 )
2) a3 + b3 = (a + b)(a2 – ab + b2 )
3) a3 – b3 = (a – b)3 + 3ab(a – b)
4) a3 + b3 = (a + b)3 – 3ab(a + b)
3. n. Dereceden Farkı – Toplamı
1) n bir sayma sayısı olmak üzere,
xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + … + xyn – 2 + yn – 1) dir.
2) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – … – xyn – 2 + yn – 1) dir.
4. Tam Kare İfadeler
1) (a + b)2 = a2 + 2ab + b2
2) (a – b)2 = a2 – 2ab + b2
3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
n bir tam sayı ve a ¹ b olmak üzere, 
• (a – b)2n = (b – a)2n
• (a – b)2n – 1 = –(b – a)2n – 1 dir.
• (a + b)2 = (a – b)2 + 4ab
5. (a ± b)n nin Açılımı
Pascal Üçgeni

(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.
• (a + b)3 = a3 + 3a2b + 3ab2 + b3 
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1) 
• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)
• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)



a3 + b3 + c3 – 3abc = 
(a + b + c)(a2 + b2 + c2 – ab – ac – bc)

C. ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI
ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.
1. YÖNTEM
1. a = 1 için,
b = m + n ve c = m × n olmak üzere,

2. a ¹ 1 İken
× n = a, mp + qn = b ve c = q × p ise

ax2 + bx + c = (mx + q) × (nx + p) dir.
2. YÖNTEM
Çarpımı a × c yi,
toplamı b yi veren iki sayı bulunur.
Bulunan sayılar p ve r olsun.
Bu durumda,

 daki ifade gruplandırılarak çarpanlarına ayrılır