Cevap :

B. KARTEZYEN ÇARPIM

A ve B herhangi iki küme olmak üzere, birinci bileşeni A kümesinden, ikinci bileşeni B kümesinden alınarak oluşturulan bütün sıralı ikililerin kümesine, A ile B nin kartezyen çarpımı denir.

A kartezyen çarpım B kümesi A x B ile gösterilir.

A x B = {(x, y) : x Î A ve y Î B} dir.

A ¹ B ise, A x B ¹ B x A dır.

C. KARTEZYEN ÇARPIMININ 

ÖZELLİKLERİ

i) s(A) = m ve s(B) = n ise

s(A x B) = s(B x A) = m . n dir.

ii) A x (B x C) = (A x B) x C

iii) A x (B È C) = (A x B) È (A x C)

iv) (B È C) x A = (B x A) È (C x A)

v) A x (B Ç C) = (A x B) Ç (A x C)

vı) A x Æ = Æ x A = Æ

vıı) 

 

D. BAĞINTI

A ve B herhangi iki küme olmak üzere A x B nin her alt kümesine A dan B ye bağıntı denir.

Bağıntı genellikle b biçiminde gösterilir.

b Ì A x B ise, b = {(x, y) : (x, y) Î A x B} dir.

s(A) = m ve s(B) = n ise,

A dan B ye 2m.n tane bağıntı tanımlanabilir.

A x A nın herhangi bir alt kümesine A dan A ya bağıntı ya da A da bağıntı denir.

s(A) = m ve s(B) = n olmak üzere,

A dan B ye tanımlanabilen r elemanlı (r £ m . n) bağıntı sayısı

b Ì A x B olmak üzere,

b = {(x, y) : (x, y) Î A x B} bağıntısının tersi

b-1 Ì B x A dır.

Buna göre, b bağıntısının tersi

b-1 = {(y, x) : (x, y) Î b} dır.

E. BAĞINTININ ÖZELLİKLERİ

b, A da tanımlı bir bağıntı olsun.

1. Yansıma Özelliği

A kümesinin bütün x elemanları için (x, x) 

 b ise, b yansıyandır.

"x Î A için, (x, x) Î b® b yansıyandır.

2. Simetri Özelliği

b bağıntısının bütün (x, y) elemanları için (y, x) Î b ise, b simetriktir.

"(x, y) Î b için (y, x) Î b ® b simetriktir.

b bağıntısı simetrik ise b = b-1 dir.

s(A) = n olmak üzere, A kümesinde tanımlanabilecek simetrik bağıntı sayısı

 

s(A) = n olmak üzere, A kümesinde tanımlanabilecek yansıyan bağıntı sayısı 2(n2 - n) dir.

3. Ters Simetri Özelliği

b bağıntısı A kümesinde tanımlı olsun.

x ¹ y iken "(x, y) Î b için (y, x) Ï b ise, b ters simetriktir.

b bağıntısında (x, x) elemanın bulunması ters simetri özelliğini bozmaz.

4. Geçişme Özelliği

b, A da tanımlı bir bağıntı olsun.

"[(x, y) Î b ve (y, z) Î b] için (x, z) Î b ise,

     

          olmalı

b bağıntısının geçişme özelliği vardır.

normal x sayılarını x doğrusuna y sayılarını da y doğrusuna yazıyosun. çizgiler çiziyosun ya düz çizgi ya da tırtıklı. eğer aradaki rasyonel sayıları da alıyosa düz,almıyosa tırtıklı çizgi çekiyosun. noktalar da içi dolu yada boş olabiliyo zaten. o da şuna göre. iki düz çizginin birleşiminde sadece içi dolu geliyo onun dışında içi boş yuvarlak geliyo