Cevap :

) n elemanlı bir kümede A dan A ya bağıntı sayısını bulmak için;

n tane eleman n tane elemana gideceğinden n.n farklı eşleme yapılabilir.

bu n.n farklı eşlemenin her alt kümesi A dan A ya bir bağıntıdır. yani 2^(nkare) tane bağıntı yazılabilir A dan A ya.

bir bağıntının A dan A ya yansıyan olması için bu bağıntıda mutlaka her elemanın kendine 1 kez gitmesi gerekir.

örneğin A: {a,b,c} olsun, B: {(a,a) , (b,b)} bağıntısı yansıyan değildir çünkü (c,c) yoktur.
ama B2 : {(a,a) , (b,b) , (c,c) , (a,c)} bağıntısı yansıyandır. umarım anlatabilmişimdir yani yansıyan olması için tüm yansıyanların olması gerekiyor bağıntıda ; gerisi önemli değil.

n elemanlı bir kümede n tane yansıyan eşleme yazılabileceğinden ( 3 elemanlıda aa bb cc olmak üzere 3 tane yazılabiliyor) n.n lik eşleştirmeler arasından n tanesi yansıyan eşleştirmedir.

o halde bizim yazacağımız bağıntıda bu 'n eleman' kesinlikle olacaktır (yansıyan olma şartı)

kalan elemanlardan ise hiçbiri olmayabilir, 1 tanesi olabilir, herhangi 2 tanesi olabilir, hepsi olabilir.. bu yansıyan olma özelliğini bozmaz.

kalan n^2 - n tane eleman vardır. bağıntmıza kaç farklı etki yapabileceği n^2 - n elemanlı bir kümenin altküme sayısı kadardır. (bkz: boş küme için hiçbiri eklenmez, 1 elemanlı altkümeler için 1 er 1er eklenir bizim n elemanlı bağıntıya ve yeni bağıntyalr oluşur. bu kümenin kendisi olan alt küme için hepsi eklenir vs .)

o halde ekleme 2(n^2 - n) şekilde yapılabileceğinden yansıyan bağıntı sayısı da budur.