Cevap :

“Çemberde Açılar ve
Yaylar“ ne midir? Daha önceki
çalışmamızda bahsettiğimiz gibi
ilköğretim 7. Sınıfın bir konusu
olmakla birlikte tabii ki bir konudan
çok fazlasıdır. Çemberin temel
özelliklerini kavradığımız için
“çember” ve “yay” nedir bilmektir.
Bununla yetinmeyip “merkez açı, çevre açı, majör yay, minör yay” gibi daha birçok yeni
kavramla tanışmak, bunlar hakkında ilişki kurmak, çeşitli problemler çözmektir. 4
ÇEMBERLE İLGİLİ TEMEL KAVRAMLAR
Düzlemde alınan bir noktaya eşit uzaklıktaki noktaların oluşturduğu küme çember
olarak adlandırılır. Şekilde O merkezli çember görülmektedir.
Kesen:
Çemberin iki farklı noktasından geçen doğruya kesen denir. Şekilde d doğrusu bir
kesendir.
Kiriş:
Çemberin iki farklı noktasını birleştiren doğru parçasına kiriş denir. Şekilde |CD|
doğru parçası çembere ait bir kiriştir.
Teğet: Çemberle tek bir ortak noktası olan doğruya çemberin teğeti denir.5
Merkez ile çember üzerindeki herhangi bir noktayı birleştiren doğru parçalarına
yarıçap denir. “R” ya da “r” harfi ile sembolize edilebilir.
Örneğin, |OA| ve |OB| birer yarıçaptır.
Merkezden geçen kirişe çap denir. |AB| doğru parçası çemberin çapıdır.
Bir çemberin en uzun kirişi çaptır.
1
ÇEMBERDE YAYLAR
Yay:
Çember üzerindeki herhangi iki noktayı birleştiren noktalar kümesinin belirttiği
eğriye yay denir. Çemberin çevresini tarayan toplam yayın ölçüsü 360 derecedir. Çember
üzerinde herhangi iki nokta aldığımızda bu noktaları birleştiren iki tane yay görülür. Bu
noktada yaylar majör yay ve minör yay olmak üzere ikiye ayrılır.
Majör Yay: İki nokta arasında oluşan yaylardan derecesi büyük olanına majör
yay denir.
Minör Yay: İki nokta arasında oluşan yaylardan derecesi küçük olanına minör
yay denir.
Örnek:
Bir çemberde iki nokta arasında oluşan yaylardan majör yay, minör yayın 5
katıdır. Bu majör ve minör yaylar kaçar derecedir?

1
Çap bir çemberin simetri ekseni olduğundan, düşünürsek çapın en uzun kiriş olduğu aşikârdır.6
Çözüm:
Minör yaya x diyelim, o halde majör yay 5x derece olacaktır. Görüldüğü gibi
küçüklük ve büyüklük olarak da uygundur. (5x>x) Bir çemberin çevresi 360 derece olacağı
için bu iki açının toplamı da 360 derece olmalıdır.
x+5x=360
6x=360
x=60, 5x=300
Minör yay=x=60
Majör yay=5x=300 olur.
ÇEMBERDE AÇI ÇEŞİTLERİ
 Merkez açı: Başlangıç noktası merkez üzerinde olan ve çember
üzerindeki yay parçasını gören açıya merkez açı denir.
 Çevre Açı: Başlangıç noktası çember üzerinde olan ve çember
üzerindeki bir yay parçasını gören açıya çevre açı denir.
ÇEMBERDE AÇILAR VE YAYLAR ARASINDAKİ
BAĞINTILAR:
 Bir merkez açı gördüğü yayın ölçüsüne eşittir.
 Bir çevre açı gördüğü yayın ölçüsünün yarısına eşittir.7
NOT:
Bir çevre açının gördüğü yayın ölçüsünün yarısına eşit olduğunu öğrendik. O
halde bu bilgiden şöyle bir çıkarım doğar: Aynı yayı gören çevre açıların ölçüleri birbirine
eşittir.
Örnek:
Aynı yayı gören bir merkez açı ile iki çevre açının ölçüleri toplamı 160 derece ise
bahsedilen merkez açı kaç derecedir?
Çözüm:
Öğrendiğimiz gibi aynı yayı gören çevre açılar birbirine eşittir. Bu açılar x derece
olsun. O halde bu yay 2x derece olur. Bu yayı gören merkez açının ölçüsü direk yayın
ölçüsüne eşit olacağından 2x derecedir. Şimdi bunları toplayalım:8
x+x+2x=160
4x=160
x=40
Bizden merkez açı yani 2x istenmiş o halde sonuç 2x=80 derece olur.
ÇEMBERDE KİRİŞLER İLE YAYLAR ARASINDAKİ
BAĞLAR
 Eşit uzunluktaki kirişlerin çemberde ayırdıkları yaylar eşittir.
 Paralel kirişler arasında kalan yaylar eşittir.9
ÇÖZÜMLÜ ÖRNEKLER
Örnek 1:
Çözüm:
Yukarıda gördüğümüz özelliği derhal pekiştirelim. Eşit uzunluktaki kirişlerin
ayırdığı yaylar eşittir. O halde AB yayı ile CD yayı ve AE, ED ve BC yayları ölçüleri
eşittir. Bize verilen eşitliği de kullanırsak AE, ED ve BC yayları x derece olsun. AB ve CD
yayları 3x’er derece olur.
Bu ölçüleri üçgenin tamamına eşitlersek:
x+x+x+3x+3x=360
9x=360
x=40
3x=120 bulunur.10
Örnek:
Çözüm:
İkinci verilen özelliğimizi hatırlayalım: Paralel kirişler arasında kalan yayların
ölçüleri eşittir. |AB| // |CD| olduğundan AC ve BD yayları eşittir. |BE|//|FC| olduğundan BF
ile EC yayları eşittir. Dikkat edersek eşit iki yay parçasından eşit iki yay parçası çıkarılmış
o halde AE yayı ile FD yayı da eşit olmak zorundadır.
O halde denklemi eşitlersek:
3x+40=2x+60
3x-2x=60-40
x=20 bulunur.
LÜTFEN DİKKAT:
Paralel kirişler arasında kalan yay ölçüleri eşittir, ayırdıkları yaylar eşit olabilir de
olmayabilir de.11
KONUNUN ÖZETİNİN BİR TABLO İLE GÖSTERİMİ:
Çemberde Açılar Çemberde Yaylar
Merkez
Açı
Başlangıç noktası merkez
üzerinde olan ve çember
üzerindeki yay parçasını
gören açıya merkez açı denir.
Minör
Yay
İki nokta arasında oluşan
yaylardan derecesi küçük
olanına minör yay denir.
Çevre
Açı
Başlangıç noktası çember
üzerinde olan ve çember
üzerindeki bir yay parçasını
gören açıya çevre açı denir.
Majör
Yay
İki nokta arasında oluşan
yaylardan derecesi büyük
olanına majör yay denir.