Cevap :

1. Uzunluk Hesaplamaları:

 a) Gerçek Uzunluk:

G.U. = H.U.x Ölç.P.

 

Örnek: Ölçeği 1/200.000 olan bir haritada 5 cm’lik uzaklık gerçekte kaç km ‘dir?

Çözüm: GU= HU x Ölç.Pd

GU= 5 x 200.000

GU= 1.000.000 cm = 10 km

Burdada görüldüğü gibi ölçek işlemi dışında harita uzunluğu ve gerçek uzunluk işlemlerinde ölçeğin paydasındaki 5 sıfırın silinmesi işlemi kolaylaştırır.

 b) Harita Uzunluğu:

Örnek: Gerçekte 210 km olan iki merkez arası 1:700.000 ölçekli bir haritada kaç cm ile gösterilir.

                       Gerçek uzunluk
Harita Uzunluğu: ---------------
                       Ölçeğin Paydası

Bu işlemde de işlem sırasında ölçeğin paydasındaki 5 sıfırın silinmesi 210 rahat bir şekilde 7 ye bölünmesini sağlar ve işlemi kolaylaştırır.


c) Ölçek Bulma:

Örneğin ölçeği 1/200.000 olan bir haritada 1 cm gerçekte 200.000 cm (2 km)’dir. O halde ölçek, harita uzunluğunun gerçek uzunluğa oranıdır  demek doğru olur. Budurumda ölçeğin formülü ortaya çıkar:
          
            Harita Uzunluğu (cm)
Ölçek:  ----------------
            Gerçek uzunluk (km)

Bu işlem sonucu çıkan rakama birim belirtmemişse 5 tane sıfır eklenir.Ancak işlem m(metre)gibi farklı birimde yapılırsa eklenen sıfır sayısı değişebilir.

2. Alan Hesaplamaları: 

Alan hesaplamalarında kolaylık olması için harita alanı ve gerçek alan hesaplamalarında ölçeğin payda kareleri alınmadan önce 5 sıfırın silinmesi işlemde kolaylık sağlar.

a) Gerçek Alan:

 GA = HA× (Ölç.Pd )2

 Örnek: 1:1.500.000 ölçekli haritada alanı 3 cm2 olan gölün gerçek alanı kaç km‘dir?

A) 135 B) 225 C) 450 D) 675 E) 750

Çözüm: GA = HA× (Öl.Pd)2

GA=3 x (1.500.000) 2 = 3 x 225 km2

GA=675 km2

b) Harita Alanı:      
                      Gerçek Alan
   Harita Alanı : ------------
                     Ölçeğin Payda Karesi

Örnek: Gerçekte 100 km2  olan bir göl 1:500.000 ölçekli bir haritada kaç cm2 ile gösterilir?

Haritada alan :100/(1:500000)karesi devamında paydanın 5 sıfırını silerek kare alırsam 
100/(5)karesi :100/25:4 çıkar harita alanı     4cm karedir.

 *Not: Harita hesaplamalarında, ölçek dışında sorulan her sorunun çözümü  yapılırken,formüldeki veriler yerine konulduktan sonra, eğer santimetre kilometre ilişkisi varsa,ölçeğin paydasından beş sıfır  silinir. Sonuç her zaman aynı  çıkar. Özellikle alan hesaplamalarında bu yol zaman kazandırır.

c) Ölçek Bulma: 

Örnek: Gerçekte 100 km2 olan iki merkez arası haritada 25 cm2 olarak gösterildiğine göre haritanın ölçeği kaçtır?
                            GerçekAlan
Ölçeğin payda karesi:------------ 
                           Haritadaki Alan

Bu işlemde dikkat edilmesi gereken nokta çıkan sonuç payda karedir ve kök dışına çıkartılır ve ölçek olduğu için 5 sıfır ilave edilir.


3. Çizik Ölçeğin Kesir Ölçeğe Çevrilmesi:

Çizik ölçek  kesir ölçeğe çevrilirken, çizik ölçeğin boyu  gösterdiği gerçek uzunluğa bölünür.  

birazcık netten bak güzel olur kıtalar arası 4saat vardur