Cevap :
Üs Kavramı:
(a) reel sayı ve (m) bir pozitif tamsayı olmak üzere; am ifadesi, m tane (a) nın çarpımını gösterir.
am = a . a . a...a şeklinde gösterilir.
Örnekler:
23 = 2 . 2 . 2 =8
52 = 5 . 5 = 25
Özellikler:
· Sıfırdan farklı bir sayını sıfırıncı kuvveti 1’e eşittir.
am = a0 = 1
Örnekler: 30 = 1
· Bir sayının birinci kuvveti kendisine eşittir.
am = a1 = a
Örnekler: 21 = 2
· Bir kesrin kuvvetini almak için pay ve paydasının ayrı ayrı kuvvetleri alınır.
( a )m = am
b bm
Örnekler: ( 2 )5 = 25 = 32
3 35 243
· Üslü bir ifadenin kuvveti alınırken üsler çarpılır.
(am)n = am . n
Örnekler: ( 23)2 = 23 . 2 = 26 = 2 . 2 . 2 . 2 . 2 . 2 = 64
· a ¹ 0 reel sayı ve m bir pozitif tamsayı için;
a-m = 1
am
Örnekler: 23 = 1 = 1
23 8
· Bir kesrin üssü negatif ise kesir ters çevrilip üssü pozitif yapılır.
( a )-m = ( b )m
b a
Örnekler: ( 2 )-3 = ( 3 )3 =27
3 2 8
Tek veya Çift Kuvvetler:
(-2)4 = (-2) .(-2) . (-2) . (-2) = +16
Sıfırdan farklı bir sayının;
· Çift kuvvetleri pozitiftir.
· Tek kuvvetleri ise bu sayı ile aynı işaretlidir.
Üslü İfadelerde Toplama ve Çıkarma:
Tabanları ve üsleri aynı olan ifadelerin katsayıları toplanır ya da çıkarılır.
Örnek
Örnek: 3a5 –8a5 + a5 toplamının sonucu nedir?
Çözüm: a5 ’lerin bilgi yelpazesi.net katsayılarını toplayalım.
(3-8+1) a5 = 4a5
Üslü İfadelerde Çarpma:
· Tabanları aynı üsleri farklı olan üslü ifadeler çarpılırken ortak taban, taban olarak alınır. Üsler toplanıp üs olarak yazılır.
am . an = am+n
· Tabanları farklı üsleri aynı olan üslü ifadeler çarpılırken tabanlar çarpılıp taban olarak yazılır ortak üs, üs olarak yazılır.
am . bm = (a+b)m
· Tabanları ve üsleri farklı molan üslü ifadeler çarpılırken, önce kuvvetler alınır sonra çarpma işlemi yapılır.
Örnek: 23 . 52 = 8 . 25 = 200
ÜSLÜ NİCELİKLER
Bir sayının kendisi ile tekrarlı çarpımı, o sayının kuvveti olarak adlandırılır.Bu tekrarlı çarpımın sonucunu bulmaya kuvvet alma işlemi denir.Kuvvet kelimesi ile üs kelimesi eşdeğerdir.
a.a.a.a.a…..a=an (n tane a’nın çarpımı) (a=taban,n=üs veya kuvvet)
3x3x3x3x3=35 (5 tane 3’ün yan yana yazılıp çarpılmasıdır.)
2x2x2x2x2x2x2x2x2=29
(-4)x(-4)=(-4)2
Sıfırdan farklı her sayının sıfırıncı kuvveti 1’e eşittir.Sıfırın sıfırıncı kuvveti tanımsızdır. 00=tanımsız
n0=1
(-1)0=1
70=1
Sıfırın sıfırdan farklı bütün kuvvetleri 0’a eşittir.
01=0
05=0
0109=0
10’un pozitif kuvvetleri:
101=10
102=100
103=1000
104=10000
Negatif bir tam sayının tek kuvvetleri daima negatif sayıdır.
(-2)1=-2
(-2)3=-8
(-2)5=-32
Negatif bir tam sayının çift kuvvetleri daima pozitif sayıdır.
(-2)2=4
(-2)4=16
(-2)6=64