Cevap :

Şeyma

|DE| = k

|EC| = 3k

Bu durumda |AB| = 4k

Kum saati özelliği.

[tex] \frac{|DE|}{|AB|} = \frac{|DF|}{|FB|} = \frac{|EF|}{|FA|} = \frac{k}{4k} [/tex]

k/4k kesri sadeleşir: 1/4

  • [tex] \frac{|EF|}{4} = \frac{1}{4} [/tex]

Buradan |EF| = 1 olarak bulunur.

ADE üçgeninde öklid var.

Öklid kuralına göre:

|DF|² = |EF| × |AF|

Değerleri denklemde yerlerine yazalım.

  • |DF|² = 1×4 = 4

Buradan |DF| = 2 bulunur.

  • [tex] \frac{2}{x} = \frac{1}{4} [/tex]

Ve buradan da x = 8 bulunur.

Cevap: C

İyi çalışmalar, kolaylıklar diliyorum.