Cevap :
PİSAGOR BAĞINTISI
Dik üçgende dik kenarların uzunluklarının kareleri toplamı hipotenüsün uzunluğunun karesine eşittir.
ABC üçgeninde m(A) = 90°
a2=b2+c2
ÖZEL DİK ÜÇGENLER
1. (3 - 4 - 5) Üçgeni
Kenar uzunlukları (3 - 4 - 5) sayıları veya bunların katı olan bütün üçgenler dik üçgendir. (6 - 8 - 10), (9 - 12 - 15), … gibi
2. (5 - 12 - 13) Üçgeni
Kenar uzunlukları (5 - 12 - 13) sayıları ve bunların katı olan bütün üçgenler dik üçgenlerdir. (10 - 24 - 26), (15 - 36 - 39), … gibi.
Kenar uzunlukları 8, 15, 17 sayıları ile orantılı olan üçgenler dik üçgenlerdir.
Kenar uzunlukları 7, 24, 25 sayıları ile orantılı olan üçgenler dik üçgenlerdir.
3. İkizkenar dik üçgen
ABC dik üçgen |AB| = |BC| = a |AC| = aÖ2
m(A) = m(C) = 45° İkizkenar dik üçgende
hipotenüs dik kenarların Ö2 katıdır.
4. (30° – 60° – 90°) Üçgeni
ABC eşkenar üçgeni yükseklikle ikiye bölündüğünde
ABH ve ACH (30° - 60° - 90°)
üçgenleri elde edilir.
|AB| = |AC| = a
|BH| = |HC| =
pisagordan
(30° - 60° - 90°) dik üçgeninde; 30°'nin karşısındaki kenar
hipotenüsün yarısına eşittir. 60° nin karşısındaki kenar,
30° nin karşısındaki kenarın Ö3 katıdır. bilgiyelpazesi.net
5. (30° - 30° - 120°) Üçgeni
(30° - 30° - 120°) üçgeninde 30° lik açıların karşılarındaki kenarlara a dersek 120° lik açının karşısındaki kenar aÖ3 olur.
6. (15° - 75° - 90°) Üçgeni
(15° - 75° - 90°) üçgeninde
hipotenüse ait yükseklik |AH| = h dersek, hipotenüs
|BC| = 4h olur. Hipotenüs kendisine ait yüksekliğin dört
katıdır.
pisagor: dik açılı üçgenin 90 derecenin yanında bulunan iki çizginin uzunluklarının karesinin toplanması dik açının karşısındaki çizginin yani hipotenüsün uzunluğunu verir