Cevap :

Örnek: A={a,b,c}   B={1,2,3,4,5,6} ise

Fonksiyonun elemanlarının liste yöntemiyle gösterimi

f={(a,2),(b,4),(c,4)}

Fonksiyonun görüntü kümesi

f(A)={2,4}

Örnek: A={-1,0,2,4}, f: A---->B, f(x) = x2-2 veriliyor. f ve f(A) kümesini

bulalım.

Tanım kümesindeki elemanlara x deriz.

x=-1 için f(-1)=(-1)2-2=-1

x=0 için f(0)=(0)2-2=-2

x=2 için f(2)=(2)2-2=2

x=4 için f(4)=(4)2-2=14

f={(-1,-1),(0,-2),(2,2),(4,14)}

f(A)={-1,-2,2,14}

Örnek: f(x+1)=3+f(x) ve f(1)=4 ise f(3) kaçtır?

f(x+1)=3+f(x) eşitliğinde

x=1 yazalım.

f(2)=3+f(1)

f(2)=3+4=7

x=2 yazalım.

f(3)=3+f(2)

f(3)=3+7=10

Örnek: f: R---->R, f(x) = 3x+5 fonksiyonu veriliyor. f(2x+3) fonksiyonunun f(x) cinsinden eşiti nedir?

f(x) = 3x+5

f(2x+3) = 3(2x+3)+5

f(2x+3) = 6x+14

f(2x+3) = 2(3x+5)+4

f(2x+3) = 2f(x)+4

Örnek: f: R---->R, f(3x+2) = x2-x+2 olduğuna göre f(5)+f(2) toplamı

kaçtır?

f(3x+2) = x2-x+2 fonksiyonun içlerini sırasıyla 5 ve 2’ye eşitleyeceğiz.

3x+2=5 buradan x=1 olur.

x=1 için f(5)=1-1+2=2

3x+2=2 buradan x=0 olur.

x=0 için f(2)=0-0+2=2

f(5)+f(2)=2+2=4