Cevap :
BAC, ABC ve ACB açıları üçgenin iç açılarıdır.|BC| = a, |AC| = b, |AB| = cuzunluklarına üçgenin kenar uzunlukları denir. iç açıların bütünleri olan açılara dış açılar denir. ABC üçgeni bir düzlemi; üçgenin kendisi, iç bölge, dış bölge, olmak üzere üç bölgeye ayırır.ABC È {ABC iç bölgesi} = (ABC) (üçgensel bölge) ÜÇGEN ÇEŞiTLERi
1. Kenarlarına göre üçgen çeşitleri
a. Çeşitkenar üçgen
Üç kenar uzunlukları da farklı olan üçgenlere denir.b. ikizkenar Üçgen
Herhangi iki kenar uzunluklarıeşit olan üçgenlere denir.c. Eşkenar Üçgen
Üç kenar uzunluklarıda eşit olan üçgenlere denir.2. Açılarına göre üçgenler
a. Dar açılı üçgen
Üç açısının ölçüsü de 90° den küçük olan üçgenlere dar açılıüçgen denir.b. Dik açılı üçgen
Bir açısının ölçüsü 90° ye eşit olan üçgenlere denir.Dik üçgen olarak adlandırılır.c. Geniş açılı üçgen
Bir açısının ölçüsü 90° den büyük olan üçgenlere denir.Bir üçgende bir tek geniş açı olabilir. ÜÇGENİN TEMEL ve YARDIMCI ELEMANLARIÜçgenin kenarları’ na ve açıları’ na temel elemanlar, Yükseklik, kenarortay veaçıortaylarına yardımcı elemanlar denir.
1. Yükseklik
Bir köşeden karşı kenara veya karşı kenarın uzantısına çizilen dik doğru parçasına yükseklik denir.
ha® a kanarına ait yükseklik.hc ® c kenarına ait yükseklik
yüksekliklerin kesim noktasına üçgenin Diklik Merkezi denir.
2. Açıortay
Üçgenin bir köşesindeki açıyıiki eş parçaya ayıran ışına o köşenin açıortayıdenir.
nA® A köşesine ait iç açıortayn‘A ® A köşesine ait dış açıortay3. Kenarortay
Üçgenin bir kenarının orta noktasını karşısındaki köşe ile birleştiren doğru parçasına o kenara ait kenarortay denir.|AD| = Va , |BE| = Vb olarak ifade edilir. Dik üçgende, hipotenüse ait kenarortay hipotenüsün yarısına eşittir.|BC| = a (hipotenüs)
ÜÇGENDE AÇI ÖZELLİKLERİ
1. Üçgende iç açıların ölçüleri toplamı180° dir.[AD // [BC] olduğundan,
iç ters ve yöndeş olan açılar bulunur.
a + b + c = 180°
m(A) + m(B) + m(C) = 180°Üçgenin iç açılarının toplamı180° dir.
İç açılara komşu ve bütünler olan açılara dış açı denir.
2. Üçgende dış açıların ölçüleri toplamı360° dir.a’ + b’ + c’ = 360°m(DAF)+m(ABE)+m(BCF)=360° 3. Üçgende bir dış açının ölçüsü kendisine komşu olmayan iki iç açının ölçüleri toplamına eşittir.[AB] // [CE olduğundan m(ACD)=a+b m(DAC) = m(A') = b + cm(DBE) = m(B') = a + c
m(ECF) = m(C') = a + b
Yandaki şekilde a, b, c bulundukları açıların ölçüleri ise,m(BDC) = a+b+c 4. iki kenarı eş olan üçgene ikizkenar üçgen denir.ABC üçgeninde:
lABl=lACl Û m(B)=m(C)
Burada A açısına ikizkenar üçgenin tepe açısı, [BC] kenarına ise tabanıdenir.
Tepe açısına m(BAC) = a dersek
Taban açıları