Cevap :

 

ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA ( I )

Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin  de yazılamayan polinomlara  indirgenemeyen polinomlar denir.

                       Baş katsayısı bir olan indirgenemeyen polinomlar  Asal polinomlar  denir.

*  P(x) = x2 + 4 ,  Q(x) = 3x2 + 1,  R(x) = 2x – 3 ,  T(x) = - x + 7

      Polinomları indirgenemeyen polinomlar dır.

      P(x) = x2 + 4  baş katsayısı 1 olduğundan  asal polinom dur.

Tanım : İçindeki değişkenlerin alabileceği her değer için doğru olan eşitliklere özdeşlik denir.

 *  a) x3 (x2 – 2x) = x5 – 2x4      b) a2 (x + y)2 = a2 x2 + a2 y2   özdeşlik

     c) a2 (x +y)2 = a2 x2 + a2 y2     özdeşlik değildir.

ÖNEMLİ ÖZDEŞLİKLER

 

I)    Tam Kare Özdeşliği:

            a)     İki Terim Toplamının Karesi :  (a + b)2 = a2 + 2ab + b2

            b)       İki Terim farkının Karesi       :   (a – b)2 = a2 – 2ab + b2

İki terim toplamının ve farkının karesi alınırken; birincinin  karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.

           c)       Üç Terim Toplamının Karesi:   (a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc)    şeklindedir.

 

II)    İki Terim Toplamı veya Farkının Küpü :

       a)       İki Terim Toplamının Küpü :  (a + b)3 = a3 + 3a2b + 3ab2 + b3

 b)    İki Terim Farkının Küpü      :  (a – b)3 = a3  – 3a2b + 3ab2 – b3

Birinci terimin küpü;() birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,() ikincinin  küpü biçimindedir. Bu açılımlara Binom  Açılımıda denir

 Not:. Paskal Üçgeni kullanılarak  4.,5.,6.,...Dereceden iki terimli  lerin özdeşliklerini de yazabiliriz.

 III)   İki Kare Farkı Özdeşliği:      (a + b) (a – b) = a2 – b2

  İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir 

IV)    xn + yn  veya xn - yn  biçimindeki polinomların Özdeşliği :

   i)   İki küp Toplam veya Farkı :   a3 + b3 = (a + b) (a2 – ab + b2)

                                                        a3 –  b3 = (a – b) (a2 + ab + b2)

  ii)                                        a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)

                                             a4 –  b4 = (a2 + b2) (a + b) (a – b)

 iii)                           a5 + b5  = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)

                                 a5 – b5  = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)

  iv)               a6 + b6  = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)

                     a6 –  b6  = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)

   v)     a7 + b7  = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)

           a7 –  b7  = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)

 

Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz

       1)           x2 + y2  = (x + y)2 – 2xy

       2)           x2 + y2  = (x – y)2 + 2xy

 3)        (x – y)2 = (x + y)2 – 4xy

 4)        (x + y)2 = (x – y)2 + 4xy

 5)        x3 – y3 = (x – y)3 + 3xy (x – y)

 6)        x3 + y3 = (x + y)3 – 3xy (x + y) 

 7)        x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)

 

   1)  İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?                                                                   

        x2 + y2  = (x + y)2 – 2xy       2ab = 289 – 145

              145 =  (17)2 – 2ab          2ab = 144        ab = 72     C= 72

  2)   a – b = 6            (a + b)2 = (a – b)2 + 4ab       (a + b)2 = 44

        a . b = 2                          = ( 6 )2  + 4.2             (a + b) =  

        a + b = ?                         =  36 + 8                                =

  3)   a – 2b = 3  ise;  a2 + 4b2 = ?    a2 + 4b2 = (a – 2b)2 +2. a2b

        a . b = 2                                                 = ( 3 )2 + 2. 2 .2  = 17

  4)   a + b = 12  ise;  a . b = ?    (a + b)2 = (a – b)2 + 4ab    4 ab = 108

        a – b = 6                               ( 12 )2 = ( 6 )2  + 4ab           ab = 27

  5)    ise;     x2 + y2  = (x – y)2 + 2xy

              20

  6)  ise;               

                            Ç = {- 4 , 4}

   7)   m + n =8                        x3 + y3 = (x + y)3 – 3xy(x + y) 

         m . n = 1                         m3 + n3 = (m + n)3 – 3mn (m + n)

m3 + n3 = ?                                  = ( 8 )3 – 3 . 1 . 8 = 488      

   8)   a3 – b3 = 50                    x3 – y3 = (x – y)3 + 3xy(x – y)

         a – b = 2 ise;                   a3 – b3 = (a – b)3 + 3ab(a – b)

         a . b = ?                          50 = 8 + 6ab  6ab = 42ab = 7

 9)     ise;       x3 – y3 = (x – y)3 + 3xy(x – y)                                                    

      = ( 3 )3 + 3.1.( 3 ) = 36

  10)    ise;     x3 + y3 = (x + y)3 – 3xy(x + y) 

        198

  11)  a + b + c = ?               a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)

       ab + ac + bc = 12                          = ( 7 )2 – 2 ( 12 )

       a2 + b2 + c2 = ?                              = 49 – 24 = 25

 12)   ise;          

                        

        = 15

 13)      ise;                       C = 120

 14)      ise;                       C = 63

 15)    ise;                   C = 154

 16)    ise;                     C = 75

 17)     ise;                          C = 999

ÇARPANLARA AYIRMA KURALLARI

1)       Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma :    Her terimde ortak olarak bulunan çarpan, parantez dışına alınır.   Her terimin ortak çarpana bölümü parantez içine yazılır 

     1)  Aşağıdaki ifadeleri Çarpanlarına ayırınız.

     a)  3a + 3b = 3(a + b)             b)  5m – 10mn = 5m (1 – 2)

     c)  12x + 9y =3(4x + 3y)       d)  3a2b – 2ab2 = ab (3a – 2b)

     e)  3ax + 3ay – 3az                 f)  (a – b) x + 3 (a – b)

     g)  (m – n) – (a + b)(m – n)    h)   – a – b – x2 (a + b)

     ı)   x2(p – 3) + ma2 (3 – p)      i)   1 – 2x + m (2x – 1)

           

 

 1)  İki sayının toplamı 17, kareleri toplamı 145 ise; bu sayıların çarpımı kaçtır?                                                                   

        x2 + y2  = (x + y)2 – 2xy       2ab = 289 – 145

              145 =  (17)2 – 2ab          2ab = 144        ab = 72     C= 72

  2)   a – b = 6            (a + b)2 = (a – b)2 + 4ab       (a + b)2 = 44

        a . b = 2                          = ( 6 )2  + 4.2             (a + b) =  

        a + b = ?                         =  36 + 8                                =

  3)   a – 2b = 3  ise;  a2 + 4b2 = ?    a2 + 4b2 = (a – 2b)2 +2. a2b

        a . b = 2                                                 = ( 3 )2 + 2. 2 .2  = 17

  4)   a + b = 12  ise;  a . b = ?    (a + b)2 = (a – b)2 + 4ab    4 ab = 108

        a – b = 6                               ( 12 )2 = ( 6 )2  + 4ab           ab = 27

  5)    ise;     x2 + y2  = (x – y)2 + 2xy

              20

  6)  ise;               

                            Ç = {- 4 , 4}

   7)   m + n =8                        x3 + y3 = (x + y)3 – 3xy(x + y) 

         m . n = 1                         m3 + n3 = (m + n)3 – 3mn (m + n)

m3 + n3 = ?                                  = ( 8 )3 – 3 . 1 . 8 = 488      

   8)   a3 – b3 = 50                    x3 – y3 = (x – y)3 + 3xy(x – y)

         a – b = 2 ise;                   a3 – b3 = (a – b)3 + 3ab(a – b)

         a . b = ?                          50 = 8 + 6ab  6ab = 42ab = 7

 9)     ise;       x3 – y3 = (x – y)3 + 3xy(x – y)                                                    

      = ( 3 )3 + 3.1.( 3 ) = 36

  10)    ise;     x3 + y3 = (x + y)3 – 3xy(x + y) 

        198

  11)  a + b + c = ?               a2 + b2 + c2 = (a + b + c) – 2(ab + aç + bc)

       ab + ac + bc = 12                          = ( 7 )2 – 2 ( 12 )

       a2 + b2 + c2 = ?                              = 49 – 24 = 25

 12)   ise;          

                        

        = 15

 13)      ise;                       C = 120

 14)      ise;                       C = 63

 15)    ise;                   C = 154

 16)    ise;                     C = 75

 17)     ise;                          C = 999

 

Anca bu kadar bulabildim.